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LONG-TERM GOALS

This project has focused on development of active learning and semi-supervised

learning algorithms for underwater sensing. The research is being executed in collabo-

ration with NSWC Panama City, which serves as a good source of data for algorithm

testing, and a transition point for the algorithms. A long-term goal is to transition the

active-learning technology to the NSWC software suite.

OBJECTIVES

Context plays an important role when performing underwater classification, and in

this report we examine context from two perspectives. First, the classification of items

within a single task is placed within the context of distinct concurrent or previous

classification tasks (multiple distinct data collections). This is referred to as multi-task

learning (MTL), and is implemented here in a statistical manner, using a simplified

form of the Dirichlet process. In addition, when performing many classification tasks

one has simultaneous access to all unlabeled data that must be classified, and therefore

there is an opportunity to place the classification of any one feature vector within the

context of all unlabeled feature vectors; this is referred to as semi-supervised learning.

In this report we integrate MTL and semi-supervised learning into a single framework,

thereby exploiting two forms of contextual information.

A key new objective of the research is to adapt the features to the environment. For

this purpose we have introduced the Beta Process, the development and application of

which have been an important component of the research executed over the last year,

and reported here.

APPROACH

The Dirichlet process (DP) [1], [2], [3], denoted as DP(αG0), is a prior used in non-

parametric Bayesian models, for the purpose of clustering data. It is a distribution over

probability measure, i.e., each draw G from a Dirichlet process is itself a distribution.

The base measure G0 is the prior mean of the DP and the concentration parameter α,

acting as the inverse variance, controls how much the draw G from a DP is allowed to

deviated from the base measure G0. The larger α is, the smaller the variance is, and G
will concentrate more of its mass around the mean G0. In the limit as α → ∞, G goes

to G0 weakly or pointwise. However, we should note that we cannot say that G goes

to G0 in the limit as α → ∞ since draws from a DP will be discrete distributions with

probability one, even if the base measure G0 is continuous. In the limits as α → 0, G
takes random discrete values.

Let {θ1, θ2, . . . , θn} be a sequence of independent draws from a prior G, with G
itself a sample from a DP(αG0). The mathematical representation of the DP model is:

θi ∼ G
G ∼ DP (αG0) (1)

Marginalizing out G, the conditional distribution θN+1 given the other N observations
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{θ1, θ2, . . . , θN} is

p(θN+1|θ1, θ2, . . . , θN , α, G0) =
1

α + N

N∑

n=1

δθn
+

α

α + N
G0 (2)

where δθn
is a point mass located at θn.

Note that the draw G from a DP is discrete, and consequently multiple θi’s may take

the same value simultaneously. Let θ∗k, k = 1, 2, . . . , K, denote K distinct values among

θ1, θ2, . . . , θN and nk be the number of repeats of θ∗k. The conditional distribution of

(2) can be equivalently written as:

p(θN+1|θ1, θ2, . . . , θN , α, G0) =
nk

α + N

K∑

k=1

δθ∗
k
+

α

α + N
G0 (3)

From (3), we notice that the probability of θN taking the value of θ∗k is proportional to

nk. The larger the nk is, the more probable θN will take the value θ∗k. This phenomenon

can be called a clustering property since a new observation tends to join the group with

a larger number of samples.

As discussed above, draws from a DP are discrete distributions. From the stick-

breaking construction [4] this points is made more explicit by providing a constructive

form of a draw from a DP. It is simply given as follows:

G =
∞∑

k=1

πkδθ∗
k

πk = βk

k−1∏

l=1

(1 − βk)

βk ∼ Beta(1, α)
θ∗k ∼ G0 (4)

Here 0 ≤ πk ≤ 1 and
∑∞

k=1 πk = 1. It is clear from the construction form of G that

draws from a DP are discrete, composed of an infinite weighted sum of point masses.

The construction of π can be understood as follows. Starting with a stick of length 1,

we break it at β1 ∼ Beta(1, α) and assign π1 to be the length of stick we just broke

off. Recursively breaking the remaining portion at β2, β2, . . ., we get the length π2, π3

and so forth. Since the lengths πk decrease stochastically with k, the summation in

(4) may be truncated with N terms G =
∑N

k=1 πkδθ∗
k
, yielding an N level truncated

approximation to a draw G from the DP [5]. In [5] is gaven a bound for the error

introduced by the truncation in the DP.

Assuming we have a set of data {x1, x2, . . . , xN} with associated hidden parameters

{θ1, θ2, . . . , θN}, each θn is drawn independently and identically from G, while each xn

has distribution F (θn). Since G is discrete and multiple θn’s may take the same value

θ∗k, datapoints xn’s associated with the same value θ∗k belong to one cluster. Such a kind

of model of data can be viewed as a mixture model with countable infinite components.

Let zi be a cluster assignment variable, which takes on value k with probability πk.
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The generative infinite mixture model can be expressed as

xi|zi, {θ∗k} ∼ F (θ∗zi
)

zi|π ∼ Mult(π)
π|α ∼ stick(α)
θ∗k ∼ G0 (5)

where stick(α) is stick-breaking process with paramter α. Different from the finite

mixture model, which uses a fixed number of clusters to model the data, the number

of distinct values of θn with a DP prior is driven by data as well as the concentration

parameter α. In our work instead of setting a fixed value for α, a Gamma hyper-prior

over α is employed, which yields greater model flexibility.

The beta process (BP) was first introduced by Hjort [6] for applications in survival

analysis. A beta process BP(cB0) is an independent increments or Lévy process with

concentration parameter c and base measure B0. Let Ω be a measurable space and B its

σ-algebra. For all disjoint, infinitesimal partition B1,B2, . . . ,BK of Ω, the Beta process

is generated as

H(Bk) ∼ Beta(cB0(Bk), c(1 − B0(Bk))) (6)

A draw from a Beta process (BP) can be constructed as follows

B =
∑

k

πkδωk

ωk ∼ B0

πk ∼ Beta(cB0(ωk), c(1 − B0(ωk))) (7)

where δωk
is a unit mass concentrated at ωk (ωk ∈ Ω). Note from (7),

∑∞
k=1 πk 6= 1,

therefore B can not be treated as a probability mass function.

The two-parameter Beta process BP(cB0) can be extended to a three parameter Beta

process BP(a, b, B0) [7], which is specifically as

H(Bk) ∼ Beta(aB0(Bk), b(1 − B0(Bk))) (8)

Another interesting process closely related to Beta process is Bernoulli process [8],

denoted as X ∼ BeP (B), where B is a measure on Ω. If B is continuous, X is a

Poisson process with intensity B and can be constructed as

X =
N∑

i=1

δωi
(9)

where N ∼ Poi(B(Ω)) and ωi are independent draws distribution from B/B(Ω). In

the case for which B is discrete and let B =
∑

k πkδωk
, X has following construction

form,

X =
∑

k

zkδωk

zk ∼ Bernoulli(πk) (10)

X is then a set of elements which only take value {0, 1} at different locations ωk.

For our application, Ω can be thought as a space of potential features and X as an
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observation (or a datum) which possesses a part of features. The possession of features

are different for different data and determined by zk.

Let {X1, X2, . . . , Xn} be n independent draws of BeP (B) from discrete B and B
is a draw from BP(cB0). Marginalizing out B, the predictive conditional probability

of a new draw Xn+1 given the previous draws {X1, X2, . . . , Xn} is

Xn+1|X1, X2, . . . , Xn ∼ BeP (
c

c + n
B0 +

1

c + n

n∑

i=1

Xi)

= BeP (
c

c + n
B0 +

K∑

k=1

mn,k

c + n
δwk

) (11)

where mn,k is the number of n data having possessed feature wk.

Let c = 1, γ = B0(Ω) and {X1, X2, . . . , Xn+1} be generated in sequence. This

generating process is then reduced to Indian buffet process IBP (γ, n)[9],

• For the first observation (custom) X1, the number of features possessed (or the

number of dishes the customer tastes) is Poi(B0(Ω)) or Poi(γ);
• For subsequent observations (customs) Xi+1, i = 1, 2, . . . , n, the probability of

selecting previous features (or old dishes) ωk is
mi,k

1+i
, where

mi,k

1+i
is the number of

previous i observations (customers) selecting feature (dish) ωk; the number of new

features (or dishes) Xi will select is Poi(B0(Ω)/(i + 1)) = Poi(γ/(i + 1)).
As mentioned in [9], the Indian buffet process is the limiting case of a finite feature

model as K the number of potential features tends to infinity. The finite feature model

provides a full conjugacy and will allow for variational inference to be performed on

the multi-task feature selection. The finite latent feature model may be defined as

Xi =
K∑

k=1

zikδωk

zik ∼ Bernoulli(πk)

πk ∼ Beta(
a

K
, 1) (12)

Here we assume that each feature is independent from each other and could be selected

by each data with same probability, i.e., B0(Bk) = 1/K for k = 1, 2, . . . , K regions.

Extending one parameter Beta distribution Beta( a
K

, 1) to two parameters Beta distri-

bution Beta( a
K

, bK−1
K

), we may obtain more flexible model for our data.

Let p(yi|Nt(xi),θ) denote a neighborhood-based classifier parameterized by θ, rep-

resenting the probability of class label yi for xi, given the neighborhood of xi [10].

The semi-supervised classifier is defined as a mixture

p(yi|Nt(xi), θ) =
∑n

j=1bij p∗(yi|xj, θ) (13)

Let p∗(yi|xi, θ) be a base classifier parameterized by θ, which gives the probability

of class label yi of data point xi. The base classifier can be implemented by any

parameterized probabilistic classifier. For binary classification with y ∈ {1, 0}, the base

classifier can be chosen as a probit regression

p∗(yi = 1|xi,θ) = p(zi >= 0|xi, θ)
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=

∫ ∞

0

1√
2π

exp(
−||zi − θ

T
xi||2

2
)dzi (14)

where a constant element 1 is assumed to be prefixed to each x(the prefixed x is still

denoted as x for notational simplicity), and thus the first element in θm is a bias term.

bij represents the probability walking from xi to xj in t steps [10].

Let L ⊆ {1, 2, · · · , n} denote the index set of labeled data in X . The neighborhood-

conditioned likelihood function is written as

p
(
{yi, i ∈ L}|{Nt(xi) : i ∈ L},θ

)

=
∏

i∈L

p(yi|Nt(xi), θ) =
∏

i∈L

n∑

j=1

bij p∗(yi|xj, θ) (15)

Suppose we are given M tasks, defined by M partially labeled data sets

Dm = {xm
i : i = 1, 2, · · · , nm} ∪ {ym

i : i ∈ Lm}
for m = 1, · · · ,M , where ym

i is the class label of x
m
i and Lm ⊂ {1, 2, · · · , nm} is

the index set of labeled data in task m. We consider M semi-supervised classifiers,

parameterized by θm, m = 1, · · · ,M , with θm responsible for task m.

Assuming that, given {θ1, · · · ,θM}, the class labels of different tasks are condition-

ally independent. Substituting (14) into (15) the joint likelihood function over all tasks

can be written as

p
(
{ym

i , i ∈ Lm}M
m=1|{Nt(x

m
i ) : i ∈ Lm}M

m=1, {θm}M
m=1

)

=
M∏

m=1

∏

i∈Lm

nm∑

j=1

bm
ij p∗(ym

i |xm
j , θm)

=
M∏

m=1

∏

i∈Lm

nm∑

j=1

bm
ij

∫ ∞

0

1√
2π

exp(
−||zm

ij − θ
T
mx

m
j ||2

2
)dzm

ij (16)

where the m-th term in the product is taken from (15), with the superscript m indicating

the task index. Note that the neighborhoods are built for each task independently of

other tasks, thus a random walk is always restricted to the same task (the one where

the starting data point belongs) and can never traverse multiple tasks.

Our objective is to learn {θ1, · · · , θM} jointly, sharing information between tasks as

appropriate; at the same time, we also hope that within each cluster (a group of similar

tasks), the classifier could automatically exclude irrelevant features and focus on useful

ones.

Since
∑nm

j=1 bij = 1,
∑nm

j=1 bm
ij p∗(ym

i |xm
j ,θm) in (16) can be treated as a mixture

model and we can get rid of the summation by introducing a hidden variables tmi – the

index of datum to which x
m
i may transit. The generative model for the semi-supervised

Multi-task feature learning with probit model can be written as

(ym
i |tmi , zm

itmi
) ∼ I(zm

itmi
≥ 0)δ1 + I(zm

itmi
< 0)δ0

(zm
itmi

|tmi ,xm
tmi

, θm) ∼ N (θT
mx

m
tmi

, 1)
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θm = Θm ◦ Wm

Θm ∼ G
G ∼ DP(α0G0)

G0 ∼ BeP (B)
B ∼ BP(a, b, B0)

Wm ∼ N (0, β0I) (17)

where m = 1, 2, . . . M, i = 1, 2, . . .Lm and the symbol ◦ represents the Hadamard,

or elementwise multiplication of two vectors. In this generative model, we decompose

classifier θm into two parts, Θm and Wm. A Dirichlet prior DP(α0G0) is imposed

over Θm, which gives Θm,m = 1, 2, . . . , M clustering property based on the discussion

above. The base measure G0 is a draw from Beta process BP(a, b, B0). G0 is then a set

of elements taking value {0, 1}. From the above background discussion, the proposed

model has such nice properties: (1) Similar tasks will group together to share one Θ
∗
m;

Instead of using a pre-fixed number of clusters, the number of clusters is inferred from

data itself. (2) Since G0 is a draw from a Beta process, Θ∗
m may be treated as a controller

for feature learning, selecting relevant features and excluding irrelevant features. Data

from tasks within one cluster will have the same feature selection mechanism, i.e.,

keeping or throwing away the same features across all tasks within one cluster. The

tasks from different clusters then have different feature selection mechanism. (3)The

introduction of parameters Wm gives the model more flexibility – it allows the different

weights for those selected features for different tasks in one cluster.

Employing the stick-break construction for DP and truncating it to level N , as well

as approximating Beta process with the finite latent feature models, the proposed model

(17) can be written as

(ym
i |tmi , zm

itmi
) ∼ I(zm

itmi
≥ 0)δ1 + I(zm

itmi
< 0)δ0

(zm
itmi

|tmi ,xm
tmi

, ηm = h,Θ,Wm) ∼ N ((Θh ◦ Wm)T
x

m
tmi

, 1)

(ηm|V) ∼
N∑

h=1

πhδh

πh = Vh

∏

l<h

(1 − Vl), h = 1, 2, . . . , N

(Vh|α0) ∼ Beta(1, α0)
(α0|τ10, τ20) ∼ Ga(τ10, τ20)

(Θhd|τd) ∼ Bernoulli(τd)
(τd|a, b) ∼ Beta(a, b)

(Wm|β0) ∼ N (0, β0I) (18)

Here we impose a Gamma hyper-prior Ga(τ10, τ20) over concentration parameter α0 for

the DP prior. And Wm is independent drawn from a Gaussian distribution with mean

zero and covariance matrix β0I. The full likelihood function of the model is

p(y, t, z, η,Θ,W,V, τ , α0, α|x, τ10, τ20, ζ10, ζ20, β0)

=
M∏

m=1

( Lm∏

i=1

p(ym
i |tmi , zm

itmi
)p(tmi , zm

itmi
|xm

tmi
, ηm,Θ,Wm)

)
p(ηm|V)p(Wm|β0)
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N∏

h=1

p(Vh|α0)
( D∏

d=1

p(Θhd|τd)p(τd|a, b)
)
p(α0|τ10, τ20) (19)

The sequential update equations of the Gibbs sampler are as follows.

• Draw zm
ij from truncated normal distribution T N (zm

ij |Um
j , 1, ym

i zm
ij ), where Um

j =
(Θη(m) ◦ Wm)T

x
m
j ;

• Draw ηm from multinomial distribution with parameter πm

πmh ∝ exp

{
Lm∑

i=1

nm∑

j=1

δm
ij

(
zm

ij Ŵ
T
h x

m
j − 1

2
((xm

j )T
ŴhŴ

T
h xm

j )
)}

× exp

{
ln Vh +

∑

l<h

ln(1 − Vl)

}
(20)

with Ŵh = Θh ◦ Wm and πmh = πmh
PN

k=1
πmk

;

• Draw Wm from Gaussian Distribution with mean µwm = Σwm

( ∑Lm

i=1

∑nm

j=1 δm
ij z

m
ij (Θ̂η(m)◦

x
m
j )

)
and covariance Σwm =

( ∑Lm

i=1

∑nm

j=1 δm
ij (Θ̂η(m)◦x

m
j )(Θ̂η(m)◦x

m
j )T + I

β0

)−1

,

where Θ̂h = [Θh,Θh, . . . ,Θh];
• Draw Vh from Beta distribution Beta(υh1, υh2) with υh1 = 1 +

∑M

m=1 1(ηm = h)
and υh2 = α0 +

∑m

m=1

∑
l>h 1(ηm = l);

• Draw α0 from gamma distribution Gamma(τ1, τ2) with τ1 = N − 1 + τ10 and

τ2 = τ20 −
∑N−1

h=1 ln(1 − Vh);
• Draw Θhd from Bernoulli distribution with parameter p = 1

1+exp(−tmp)
, where

tmp =
∑M

m=1,η(m)=h

∑Lm

i=1

∑nm

j=1 δm
ij

(
zm

ij Wmdx
m
jd−1

2
W

2
md(x

m
jd)

T
x

m
jd−Θh◦WT

mx
m
j Wmdx

m
jd+

W
2
mdΘhdx

m
jd

2
)

+ ln(τd) − ln(1 − τd)

• Draw τd from beta distribution Beta(τd1, τd2) with τd1 = a +
∑N

h=1 1(Θhd = 1)
and τd2 = b +

∑N

h=0 1(Θhd = 0);

In this subsection we derive the variational Bayesian approximation of the exact

posterior distribution.

For simplicity the collection of all available data including features and labels is de-

noted as D, the collection of all hidden variables and model parameters as Φ and the col-

lection of hyper-parameters as Ψ. In our model D ≡ {y,x}, Φ ≡ {t, z, η,Θ,W,V, τ , α0}
and Ψ ≡ {τ10, τ20, a, b, β0}. By Bayes’law the joint posterior distribution of parameters

Φ given observed data D and hyper-parameters Ψ is

p(Φ|D,Ψ) =
p(D|Φ)p(Φ|Ψ)

p(D|Ψ)
(21)

where p(D|Ψ) =
∫

p(D|Φ)p(Φ|Ψ)dΦ often involves high-dimensional, complicated

integrals. The variational Bayesian approach [11], [12], [13] approximate the joint

posterior p(Φ|D,Ψ) with a variational distribution q(Φ). The log of marginal likelihood
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is written as

ln p(D|Ψ) = ln

∫
p(D|Φ)p(Φ|Ψ)dΦ = ln

∫
q(Φ)

p(D|Φ)p(Φ|Ψ)dΦ

q(Φ)

≥
∫

q(Φ) ln
p(D|Φ)p(Φ|Ψ)dΦ

q(Φ)
= L(D|Φ) (22)

where L(D|Φ) is the low bound of ln p(D|Ψ). The problem of computing posterior

can be reformulated as an optimization problem of minimizing the Kullback-Leibler

distance between q(Φ) and p(Φ|D,Ψ), which is equivalent to maximizing the lower

bound L(D|Φ). The optimization problem can be analytically solved based on two

assumptions on q(Φ) (i) q(Φ) is factorized; (ii) the integral over Φ of q(Φ) should be

equal to one. With appropriate choice of the form of the prior, the variational distribution

of parameters q(Φ) are as follows.

• Update q(tmi = j, zm
itmi

) for m = 1, 2, . . . , M, i = 1, 2, . . . ,Lm, j = 1, 2, . . . , nm:

q(tmi = j, zm
itmi

) ∝ bm
ijT N (zm

ij |Um
j , 1, ym

i zm
ij ) (23)

where Um
j =

∑N

h=1 ρmh(〈Θh〉 ◦ 〈Wm〉)T
x

m
j ;

• Update q(tmi = j) = δm
ij =

p(ym
i |xm

j ,Um
j )bm

ij
Pnm

k=1
p(ym

i |xm
j ,Um

j )bm
ik

• Update q(ηm = h) = ρmh, where

ρmh ∝ exp

{
Lm∑

i=1

nm∑

j=1

δm
ij

(
〈zm

ij 〉〈Ŵh〉Tx
m
j − 1

2
((xm

j )T 〈ŴhŴ
T
h 〉xm

j )
)}

× exp

{
〈ln Vh〉 +

∑

l<h

〈ln(1 − Vl)〉
}

(24)

with Ŵh = Θh ◦ Wm, 〈Ŵh〉 = 〈Θh〉 ◦ 〈Wm〉 and 〈ŴhŴ
T
h 〉 = 〈(ΘhΘ

T
h ) ◦

(WmW
T
m)〉. After Normalizing, we obtain ρmh = ρmh

PN
k=1

ρmk

;

• Update q(Wm); The variational posterior of Wm can be shown to be normal

with covariance Σwm =
( ∑Lm

i=1

∑nm

j=1 δm
ij

∑N

h=1
ρmh

nm
(〈Θ̂hΘ̂

T
h 〉 ◦ (xm

j x
m
j

T ))+ I
β0

)−1

and mean µwm = Σwm

( ∑Lm

i=1

∑nm

j=1 δm
ij

∑N

h=1 ρmh〈zm
ij 〉(〈Θ̂h〉 ◦ x

m
j

)
, where Θ̂h =

[Θh,Θh, . . . ,Θh] and

〈Θ̂hΘ̂
T
h 〉 = nm




θ2
11 θ11θ12 . . . θ11θ1D

θ11θ12 θ2
12 . . . θ12θ1D

. . .
θ11θ1D θ12θ1d . . . θ2

1D




• Update q(Vh); the variational posterior of Vh is also a Beta distribution Beta(υh1, υh2)
with υh1 = 1 +

∑M

m=1 ρmh and υh2 = 〈α0〉 +
∑m

m=1

∑
l>h ρmh.

• Update q(α0); the variational posterior of α0 can be shown to be a Gamma

distribution Gamma(τ1, τ2) with τ1 = N−1+τ10 and τ2 = τ20−
∑N−1

h=1 〈ln(1−Vh)〉
• Update q(Θhd); the probability of Θhd equal to 1 is proportional to

q(Θhd = 1)
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∝ exp

{
M∑

m=1

Lm∑

i=1

nm∑

j=1

δm
ij ρmh

(
〈zm

ij 〉〈Wmd〉xm
jd −

1

2
〈W2

md〉(xm
jd)

T
x

m
jd

)}

× exp

{
M∑

m=1

Lm∑

i=1

nm∑

j=1

δm
ij ρmh

(
W

2
mdΘhdx

m
jd

2 − 〈Θh ◦ Wm〉Tx
m
j Wmdx

m
jd

)}

× exp {〈ln(τd)〉} (25)

and the probability of Θhd equal to 0 is proportional to exp {〈(1 − ln(τd))〉} ;

• Update q(τd), d = 1, 2, . . . , D; the variational posterior of τd is still a Beta distri-

bution Beta(τd1, τd2) with τd1 =
∑N

h=1 q(Θhd = 1) + a and τd2 =
∑N

h=0 q(Θhd =
0) + b.

We here also discuss how active learning may be incorporated into this framework.

We take an information-theoretic approach to identifying the data locations at which the

labels would be most informative to the classifier parameters. Our approach is based on

use of Fisher information [14], [15], which is related to previous uses of active learning

[16], [17] as applied to purely supervised models. The Fisher information involves the

log-likelihood; as a result the prior is excluded from the calculation. Since the tasks

are connected through the prior, this implies that calculation of Fisher information can

be performed for each individual task separately (not independently though, since the

true parameters are replaced by their most recent estimates, as seen below, which are

coupled by the prior). Therefore, we drop each variable’s independence on task index

m, for notational simplicity. The data log-likelihood is obtained by taking the logarithm

of (15),

ℓ(θ)
Def.
= ln p

(
{yi, i ∈ L}|{Nt(xi) : i ∈ L},θ

)

=
∑

i∈L

ln
n∑

j=1

bij p∗(yi|xj, θ) (26)

where the base classifier is assumed as above to be a logistic-regression classifier, i.e.,

p∗(yi|xj, θ) = [1+exp{−g(xi, θ)}]−1. By definition [15], the Fisher information matrix

(FIM) for the data likelihood is

FIM
{
p
(
{yi, i ∈ L}|{Nt(xi) : i ∈ L},θ

)}

= E{yi}i∈L

[
∂ℓ(θ)

∂θ

] [
∂ℓ(θ)

∂θ

]T

=
∑

i∈L

Eyi

[∑n

j=1bijp
∗(yj = yi|xj, θ)p∗(yj = −yi|xj, θ)yixj∑n

k=1 bikp∗(yk = yi|xk, θ)

]

×
[∑n

j=1 bijp
∗(yj = yi|xj, θ)p∗(yj = −yi|xj, θ)yixj∑n

k=1 bikp∗(yk = yi|xk, θ)

]T

=
∑

i∈L

ziz
T
i

γi

(27)

where

zi
Def.
=

n∑

j=1

bijp
∗(yj = 1|xj, θ)p∗(yj = −1|xj,θ)xj (28)
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γi
Def.
=

n∑

k=1

bikp
∗(yj = 1|xk, θ)

n∑

k=1

bikp
∗(yj = −1|xk, θ) (29)

Assume that x∗ ∈ {x1, · · · ,xn}\L is a newly labeled sample and added to the labeled

set, so L changes to L̃. The Fisher information matrix changes to

FIM
{

p
(
{yi, i ∈ L̃}|{Nt(xi) : i ∈ L̃},θ

)}

=
∑

i∈L

ziz
T
i

γi

+
z∗z

T
∗

γ∗

(30)

The ratio of the determinants (one of several possible measures [14], related to the

entropy under a Gaussian approximation for the posterior for the model parameters) of

the old and new FIMs is

det
[∑

i∈L
ziz

T
i

γi
+ z∗z

T
∗

γ∗

]

det
[∑

i∈L
ziz

T
i

γi

]

=


1 +

1

γ∗

z
T
∗

[
∑

i∈L

ziz
T
i

γi

]−1

z∗


 det

[
∑

i∈L

ziz
T
i

γi

]
(31)

The logarithmic difference is

ψ(x∗) = 1 +
1

γ∗

z
T
∗

[
∑

i∈L

ziz
T
i

γi

]−1

z∗ (32)

which we employ as our selection criterion in identifying the most informative data

sample for labeling. The criterion ψ(xj) is calculated for all xj ∈ {x1, · · · ,xn} \ L,

and the one with the maximum is the most informative data location to obtain a label.

The true value of θ required in calculating z and γ is replaced with the most recent

update of the parameters, following the strategy taken in [17], [14]. To the best of our

knowledge, this is the first use of active learning in an MTL setting, and we are also

considering a semi-supervised model.

RESULTS

To evaluate the proposed multi-task feature learning algorithm, experimental results

are presented on four data sets, one based on synthetic data and others on bench-

mark real data. In order to compare with other algorithms, we employ AUC as the

performance measure, where AUC stands for area under the receiver operation curve

(ROC)[18]. The relation the AUC and the error rate is discussed in [19].

Throughout this section, the basic setup prior hyper-parameters are as follows: β0 = 1,

τ10 = 0.05, τ20 = 0.05, a = 1, b = 1 and Wm are set according to sample means. The

truncation level for Dirichlet process is the number of tasks and the initial number of

latent features are the dimension of features.

We first demonstrate the proposed multi-task feature learning model on a synthetic

data, for illustrative purpose. For our synthetic example, we have six tasks {xm, ym},m =
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1, 2, . . . , 6. The features x
m for each task are generated from a Gaussian distribu-

tion with mean zeros and covariance identity matrix. The dimension of datum is

50 and we generated N = 500 samples for each task. Assume the label ym(i), i =
1, 2, . . . , 500 is generated from ym(i) = sign(θT

mx
m(i) + N ). N is an additive white

Gaussian noise with a signal-to-noise ratio of 10. For tasks 1, 2 and 3 feature index

{3, 7, 12, 14, 16, 31, 33, 47, 48, 50} are relevant for classification, which means that linear

classifiers θm, m = 1, 2, 3 are very sparse with only elements {3, 7, 12, 14, 16, 31, 33, 47, 48, 50}
non-zero. For tasks 4, 5 and 6 feature index {11, 14, 22, 28, 30, 32, 33, 38, 39, 40} are

useful for obtaining the correct classifiers. The truncation level of Dirichlet process for

the synthesized data is equal to six. Since ground truth is available for this synthesized

example, it is employed as a starting point for analysis of the models.

The ground truth of classifier coefficients θm,m = 1, 2 . . . 6 as well as classifier

coefficients learnt with the proposed semi-supervised feature learning algorithm are

depicted in Figure 1. In the Gibbs sampling implementation, the burning period is

1000 and the results are the average of 500 iterations after burning period. The results

of variational Bayesian is the average of 100 random trials.

From Figure 1, we can see that the proposed semi-supervised MTL feature learning

algorithm can correctly select useful features for each task and can also obtain a very

good approximation for those weights.

Each curve in Figure 2(a) represents the mean AUC as a function of the number of

labeled data. Here we compare our proposed algorithm to the Semi-supervised MTL

[10]. Figure 2(b) gives us the sharing patterns that semi-supervised MTL feature learning

algorithm finds for the six tasks. we plot the Hinton diagram [20] of the between-task

sharing matrix found by the semi-supervised MTL. The (i, j)-th element of sharing

matrix records the number of occurrences that task i and j are grouped into the same

cluster. The Hinton diagram in Figure 2(b) also shows the agreement of the sharing

mechanism of the semi-supervised MTL with the similarity between the tasks.

As seen from Figure 1 and Figure 2, three observations are made:

• With the feature selection mechanism, the proposed algorithm may help to improve

classification performance;

• Task 1, 2 and 3 are grouped together and task 4, 5 and 6 are grouped together,

which is in the agreement of the ground truth;

• The number and positions of zero-elements for task 1, 2 and 3 are almost same,

although the non-zero elements have different values; The number and positions of

zero-elements for task 4, 5 and 6 are almost same, although the non-zero elements

have different values;

In the second example we consider the underwater-mine classification problem stud-

ied in [21], where the acoustic imagery data were collected with four different imaging

sonars from two different environments (see [21] for details)1. This is a binary classifica-

tion problem aiming to separate mines from non-mines based on the synthetic-aperture

sonar (SAS) imagery. For each sonar image, a detector automatically finds the objects

of interest, and a 13-dimensional feature vector is extracted for each target. The number

1The data for the underwater mine example are available at www.ece.duke.edu/ lcarin/UnderwaterMines.zip
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Fig. 1. Classifier coefficients of the semi-supervised MTL feature learning algorithm on Tasks 1-6. The horizontal

axis is feature index in each task. The vertical axis is classifier coefficients. The coefficients for synthesized data

are donated by blue circles; the learnt coefficients using Gibbs sampler are donated with green stars; the learnt

coefficients with variational Bayesian (VB) are donated with red diamond.

of mines in each of the eight tasks varies from 9 to 65, and each task contains from

10 to 100 times more non-mines (clutter) than mines.

In this problem, there are a total of 8 data sets, constituting 8 tasks. The 8 data sets
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Fig. 2. (a) Performance of the semi-supervised MTL feature learning algorithm on Tasks 1-6. The horizontal axis

is the number of labeled data in each task. The vertical axis is the AUC averaged over the six tasks;(b) The Hinton

diagram of between-task sharing found by semi-supervised MTL feature learning.

are collected with four sonar sensors from two different environmental conditions. The

total number of data points in each task is listed in Table I. The distribution of sensors

TABLE I

NUMBER OF DATA POINTS IN EACH TASK FOR THE UNDERWATER-MINE DATA SET CONSIDERED IN FIGURE ??.

Task ID 1 2 3 4 5 6 7 8

Number of data 1813 3562 1312 1499 2853 1162 1134 756

and environments are listed in Table II.

It can be seen from the synthesized example that variational Bayesian (VB) approx-

imation can achieve almost the same performance as Gibbs sampler but with much

higher speed. In this subsection we only present results of VB approach. To show the

strength of the proposed algorithm, we add 7 dummy features to the original feature

vector and extend a 13-dimensional feature vector to a 20-dimensional feature vector.

Following [21], we perform 50 independent trials, in each of which we randomly

select a subset of data for which labels are assumed known (labeled data), train the

semi-supervised MTL with feature selection and without feature selection [10], and test

the classifiers on the remaining data. The AUC averaged over 8 tasks is presented in

Figure 3, as a function of the number of labeled data in each task, where each curve

represents the mean calculated from the 50 independent trials. Figure 4 gives us one

sample of the weights of 8 tasks when labeled data from each task is 30.

The results on underwater target classification also show that the proposed semi-

supervised MTL feature learning outperforms the semi-supervised MTL algorithm [10]

by selecting relevant features.

To demonstrate active learning integrated with multi-task semi-supervised learning,
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TABLE II

DISTRIBUTION OF SENSORS AND ENVIRONMENTS OVER 8 TASKS. ENVIRONMENT A IS RELATIVELY

CHALLENGING WHILE ENVIRONMENT B RELATIVELY BENIGN, WITH THESE CHARACTERISTICS MANIFESTED

BY THE DETAILS OF THE SEA BOTTOM.

Task Sonar Environment

1 1 B

2 1 A

3 2 B

4 3 B

5 4 B

6 2 A

7 3 A

8 4 A

5 10 15 20 25 30 35 40 45
0.64
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Semi−supervised MTL with feature selection

Semi−supervised MTL (Liu et al.)

(a)

Fig. 3. Performance of the semi-supervised MTL feature learning algorithm on underwater target classification, in

comparison to semi-supervised MTL algorithm [10]. The horizontal axis is the number of labeled data in each task.

The vertical axis is the AUC averaged over the six tasks and 50 independent trials.

we consider a remote sensing problem based on data collected from real landmine

fields2. In this problem there are a total of 19 sets of data, collected from various

landmine fields (with inert landmine simulants). Each data point is represented by a

9-dimensional feature vector extracted from synthetic aperture radar images. Since this

is a detection problem, the class labels are binary, with 1 indicating landmine and 0

indicating clutter (false alarm). We have also demonstrated this technology with MCM

2The data from the landmine example are available at www.ece.duke.edu/ lcarin/LandmineData.zip
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Fig. 4. One sample of weights when labeled data from each task is 30.

data, as discussed above.

As opposed to the setting in [10], where it is assumed that labeled data from the 19

data sets are available simultaneously, we here assume the much more realistic case for

which labeled data are acquired sequentially within one data set (task) at one time. Once

the process of label acquisition in a given environment is completed, that environment

is not revisited to acquire new labeled data.

Each of the 19 data sets defines a task, in which we aim to find landmines with a

minimum number of false alarms. Of the 19 data sets, 1-10 are collected at foliated

regions and 11-19 are collected at regions that are bare earth or desert. We expect fewer

new labeled data when considering a new task for which environmental conditions stay

unchanged from previous tasks (but this is inferred by the algorithm, and not imposed

by the user).

In the experiment both labeled and unlabeled data are used in training the algorithm.

After training, the algorithm is tested on the unlabeled data to calculate the area under

ROC curve (AUC) for each data set. We compare the active-learning results with AUC

results obtained using random selection of labeled data. For the case where the labeled

data are randomly selected, we perform 20 independent trials, and compute the mean as

well as error bars of AUC from the trials. Since the data sets are acquired sequentially,

the results are presented as AUC as a function of the number of tasks from which labeled

data are acquired (the ordering of the tasks is arbitrary; the task order considered here

was selected as to make a point on the number of labels actively acquired, as discussed

further below).

We observe from the results in Figure 5 that active learning performs much better

than random selection for a small number of data sets (tasks). As discussed below,

the total number of labels used in random selection of labels is the same as that used

for active learning. When the number of tasks increases, the benefit of active learning

diminishes since the scarcity of labeled data is overcome via multi-task learning.

In Figure 6 we plot the number of labeled data for each task, as a function of task

index. For the active-learning algorithm the total number of labeled data is n = 174,

across all 19 tasks (this is determined adaptively, by the proposed algorithm). For the
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Fig. 5. Performance of active learning for semi-supervised MTL algorithm in comparison to semi-supervised

MTL with randomly-selected labeled data. The horizontal axis is the number of tasks from which labeled data are

acquired. The vertical axis is the AUC averaged over the 19 tasks.

random selection of labeled data, the data from all 19 tasks are put together, and 174

samples are selected at random for labeling; therefore, the number of labels acquired

per task is not constant (the data in Figure 6, for random selection, represents one

example). For the active-learning results in Figure 6, note the big jump in the number

of labeled data at task k = 11. Recall from above that data sets 1-10 are from generally

foliated regions and data sets 11-19 are from regions that are generally bare earth or

desert. Therefore, the jump in Figure 6 at k = 11 is consistent with expectations based

on the properties of the environments.

IMPACT/APPLICATIONS

The technology is of significant utility for MCM and ASW applications. We have

developed a new classification algorithm for multi-task feature learning. By utilizing

the clustering property of Dirichlet process (DP) and feature selection property of

Beta process, our algorithm can learning classifiers jointly, sharing information as

appropriate; at same time, the algorithm can automatically exclude irrelevant features

and learn good weights for relevant features for each task.

TRANSITIONS

The technology is being transitioned from SIG to the Navy, via a collaboration with

Dr. Robert McDonald, of NSWC Panama City.

RELATED PROJECTS

SIG is executing a related SBIR on active learning.

PUBLICATIONS
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Fig. 6. Number of labeled data using active learning in comparison to number of labeled data with random selection;

for the latter, this is one random example.
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